Analyticity in porous-thermoelasticity with microtemperatures
نویسندگان
چکیده
منابع مشابه
Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies
It is seen how to write the standard form of the four partial differential equations in four unknowns of anisotropic thermoelasticity as a single equation in one variable, in terms of isothermal and isentropic wave operators. This equation, of diffusive type, is of the eighth order in the space derivatives and seventh order in the time derivatives and so is parabolic in character. After having ...
متن کاملOn temporal behaviour of solutions in Thermoelasticity of porous micropolar bodies
We consider a porous thermoelastic body, including voidage time derivative among the independent constitutive variables. For the initial boundary value problem of such materials, we analyze the temporal behaviour of the solutions. To this aim we use the Cesaro means for the components of energy and prove the asymptotic equipartition in mean of the kinetic and strain energies.
متن کاملSpatial stability in linear thermoelasticity
Uniqueness and spatial stability are investigated for smooth solutions to boundary value problems in non-classical linearised and linear thermoelasticity subject to certain conditions on material coefficients. Uniqueness is derived for standard boundary conditions on bounded regions using a generalisation of Kirchhoff’s method. Spatial stability is discussed for the semi-infinite prismatic cyli...
متن کاملOn (non-)exponential decay in generalized thermoelasticity with two temperatures
We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the nonexponential stability for the Lord-Shulman model.
متن کاملPlane Waves in Thermoelasticity with One Relaxation Time
We apply the thermoelastic equations with one relaxation time developed by Lord and Shulman (1967) to solve some elastic half-space problems. Laplace transform is used to find the general solution. Problems concerning the ramp-type increase in boundary temperature and stress are studied in detail. Explicit expressions for temperature and stress are obtained for small values of time, where secon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2012.04.024